Insertion time of random walk cuckoo hashing

Alan Frieze
Tony Johansson

Department of Mathematical Sciences,
Carnegie Mellon University,
Pittsburgh, USA.
We are given a bipartite graph $G = (L + R, E)$ in an on-line manner.

$L = \{v_1, v_2, \ldots, v_n\}$ and $R = \{w_1, w_2, \ldots, w_m\}$.

Vertices of L are presented one at a time along with their edges to R.
On-line Bipartite Matching

We are given a bipartite graph $G = (L + R, E)$ in an on-line manner.

$L = \{v_1, v_2, \ldots, v_n\}$ and $R = \{w_1, w_2, \ldots, w_m\}$.

Vertices of L are presented one at a time along with their edges to R.

If $L_k = \{v_1, v_2, \ldots, v_k\}$ then the aim is to maintain a matching M_k of L_k into R.

Assuming a matching of L into R exists we wish to control the lengths of the augmenting path needed to replace M_{k-1} by M_k.
On-line Bipartite Matching

Has applications in Streaming Content Delivery; Web Hosting; Job Scheduling; Hashing.

Chaudhuri, Daskalakis, Kleinberg, Lin (2009): Arbitrary G with $|L| = |R| = n$. If L arrives in random order and one always uses a shortest augmenting path then the total length of augmenting paths needed is at most $n \log n$.

Tony Johansson, Carnegie Mellon University

Insertion time of random walk cuckoo hashing
Cuckoo Hashing

Each $v \in L$ chooses a set $N(v)$ of $d \geq 2$ random neighbors in R to create a graph Γ.

Aim is to construct a matching M_n from L into R.
Cuckoo Hashing

Each $v \in L$ chooses a set $N(v)$ of $d \geq 2$ random neighbors in R to create a graph Γ.

Aim is to construct a matching M_n from L into R.

Natural questions:
(a) How large should $m = |R|$ be to ensure the existence of a matching w.h.p.? Solved.
(b) How long does it take to construct M_n? Subject of talk.

Related to Cuckoo Hashing: $N(v)$ are the values of d different hash functions. Pagh and Rodler (2004)

Tony Johansson, Carnegie Mellon University

Insertion time of random walk cuckoo hashing
In Cuckoo Hashing, there are d different hash functions f_1, f_2, \ldots, f_d.

When a new item x is to be added to the table, we see if one of the hash functions maps it to an empty location. If so we place x into this location.

If not, x is mapped to $X = f_i(x)$ for some random $i \in [d]$, and the y which was previously mapped to X is mapped to $f_j(y) \neq X$ for some random $j \in [d]$. Repeat if necessary.

In other words we take a random walk to find an augmenting path.
Cuckoo Hashing

\[\nu_1 \]
Cuckoo Hashing

ν_1
Cuckoo Hashing

Tony Johansson, Carnegie Mellon University

Insertion time of random walk cuckoo hashing

v_1 v_2
Cuckoo Hashing

$\nu_1 \rightarrow u_2$
Cuckoo Hashing

Tony Johansson, Carnegie Mellon University

Insertion time of random walk cuckoo hashing
Cuckoo Hashing

Tony Johansson, Carnegie Mellon University

Insertion time of random walk cuckoo hashing
Cuckoo Hashing

Tony Johansson, Carnegie Mellon University

Insertion time of random walk cuckoo hashing
Cuckoo Hashing

Tony Johansson, Carnegie Mellon University

Insertion time of random walk cuckoo hashing
What should $m = |R|$ and d be for a matching to exist?

Trivially $m \geq n = |L|$ is needed.

If $d = 2$ then we need $m > 2n$ (Not hard to prove).
What should $m = |R|$ and d be for a matching to exist?

Trivially $m \geq n = |L|$ is needed.

If $d = 2$ then we need $m > 2n$ (Not hard to prove).

In general if $n = (1 - \varepsilon)m$ then we need $d \gg \log \frac{1}{\varepsilon}$.
We now consider the time to build M_n by using random walks to find augmenting paths. M_{k-1} is a matching of $L_{k-1} = \{v_1, \ldots, v_{k-1}\}$ into $R_{k-1} \subseteq R$. The edges of M_{k-1} are $\{\{v, \phi_{k-1}(v)\} : v \in L_{k-1}\}$.

Tony Johansson, Carnegie Mellon University

Insertion time of random walk cuckoo hashing
We now consider the time to build M_n by using random walks to find augmenting paths. M_{k-1} is a matching of $L_{k-1} = \{v_1, \ldots, v_{k-1}\}$ into $R_{k-1} \subseteq R$. The edges of M_{k-1} are $\{\{v, \phi_{k-1}(v)\} : v \in L_{k-1}\}$.

Algorithm \texttt{INSERT}:

Step 1 $x \leftarrow v_k$; $M \leftarrow M_{k-1}$;

Step 2 If $S_k(x) = N(x) \cap \bar{R}_{k-1} \neq \emptyset$ then choose y randomly from $S_k(x)$ and let $M_k = M \cup \{\{x, y\}\}$, else

Step 3 Choose y randomly from $N(x)$;

Step 4 $M \leftarrow M \cup \{\{x, y\}\} \setminus \{y, \phi_{k-1}^{-1}(y)\}$; $x \leftarrow \phi_{k-1}^{-1}(y)$; goto Step 2.
Cuckoo Hashing

Let P_k denote the augmenting path that inserts v_k into the matching.

Earlier results: Frieze, Melsted and Mitzenmacher (2011) and Fountoulakis, Panagiotou and Steger (2013):
The expected time for INSERT to reach \bar{R}_{k-1} is $O((\log n)^{2+\epsilon_d})$.
Let P_k denote the augmenting path that inserts v_k into the matching.

Earlier results: Frieze, Melsted and Mitzenmacher (2011) and Fountoulakis, Panagiotou and Steger (2013):
The expected time for \textsc{insert} to reach \bar{R}_{k-1} is $O((\log n)^2 + \varepsilon d)$.

Theorem

Assume that $n = (1 - \varepsilon)m$ and $5d^2(1 - \varepsilon)^{d/2} \leq (1 - \alpha)(d - 1)$ then

$$E(|P_k|) \leq 1 + \frac{2}{\alpha} \text{ for } k = 1, 2, \ldots, n.$$

This forces $d \gg \frac{1}{\varepsilon} \log \frac{1}{\varepsilon}$ (compare to $d \gg \log \frac{1}{\varepsilon}$)
Let
\[B = \{ v \in L : N(v) \cap \bar{R}_{k-1} = \emptyset \} . \]

If \(x \notin B \) in Step 2 of \textsc{insert} then we will have found \(P_k \).

Let \(P = (x_1, y_1, x_2, y_2, \ldots, x_\ell) \) be a path in \(\Gamma \), where \(x_1, x_2, \ldots, x_\ell \in L \) and \(y_1, y_2, \ldots, y_{\ell-1} \in R \). We say that \(P \) is interesting if \(x_1, x_2, \ldots, x_\ell \in B \).
Cuckoo Hashing

Let

\[B = \{ v \in L : N(v) \cap \bar{R}_{k-1} = \emptyset \} . \]

If \(x \not\in B \) in Step 2 of \textsc{insert} then we will have found \(P_k \).

Let \(P = (x_1, y_1, x_2, y_2, \ldots, x_\ell) \) be a path in \(\Gamma \), where \(x_1, x_2, \ldots, x_\ell \in L \) and \(y_1, y_2, \ldots, y_{\ell-1} \in R \). We say that \(P \) is interesting if \(x_1, x_2, \ldots, x_\ell \in B \).

Removing the last two edges from an augmenting path chosen by our algorithm will always yield an interesting path.
Cuckoo Hashing

Let

$$B = \{ v \in L : N(v) \cap \bar{R}_{k-1} = \emptyset \}.$$

If \(x \notin B \) in Step 2 of INSERT then we will have found \(P_k \).

Let \(P = (x_1, y_1, x_2, y_2, \ldots, x_\ell) \) be a path in \(\Gamma \), where \(x_1, x_2, \ldots, x_\ell \in L \) and \(y_1, y_2, \ldots, y_{\ell-1} \in R \). We say that \(P \) is interesting if \(x_1, x_2, \ldots, x_\ell \in B \).

Removing the last two edges from an augmenting path chosen by our algorithm will always yield an interesting path.

If there are few long interesting alternating paths, then a short randomly chosen alternating path is likely to be augmenting.
Two approaches:

A: It is not too hard to estimate the number of interesting paths of length $2\ell - 1$.

B: It is harder to estimate the number of interesting alternating paths, because this depends on the matching M_{k-1}.

We pay a price in d because we can do A but not B.
Let $\nu_{k,\ell}$ denote the number of interesting paths with $2\ell - 1$ vertices. Given A_0 and d sufficiently large, $2 \leq \ell \leq A_0 \log \log n$,

Claim 1:

$$\Pr \left(\nu_{k,\ell} \geq (1 + \alpha)(5d^2(1 - \varepsilon)^{d/2})^{\ell-1}k \right) = o(n^{-2}).$$

Compare to number of possible random walks: $(d - 1)^\ell k$, and recall $5d^2(1 - \varepsilon)^{d/2} \leq (1 - \alpha)(d - 1)$.
Let $p_{k,\ell}$ denote the probability that \textsc{insert} requires at least ℓ rounds to insert v_k.

Claim 2:

$$\mathbb{E}(|P_k|) = 1 + 2 \sum_{\ell=2}^{\infty} p_{k,\ell} \leq 1 + \frac{2}{\alpha}.$$
Cuckoo Hashing

Let $p_{k,\ell}$ denote the probability that INSERT requires at least ℓ rounds to insert v_k.

Claim 2:

$$\mathbb{E}(|P_k|) = 1 + 2 \sum_{\ell=2}^\infty p_{k,\ell} \leq 1 + \frac{2}{\alpha}.$$}

We show Claim 2 first, using Claim 1. From previous papers:

$$\sum_{\ell=A_0 \log \log n}^\infty p_{k,\ell} = o(1)$$
Recall $5d^2(1 - \varepsilon)^{d/2} \leq (1 - \alpha)(d - 1)$.

$$A_0 \log \log n \sum_{\ell=2} p_{k,\ell} \leq o(1) + A_0 \log \log n \sum_{\ell=2} \frac{\nu_{k,\ell}}{(d - 1)\ell k}$$

[Claim 1] $\leq o(1) + A_0 \log \log n \sum_{\ell=2} \frac{(1 + \alpha)(5d^2(1 - \varepsilon)^{d/2})^{\ell-1} k}{(d - 1)\ell k}$

$$\leq o(1) + (1 + \alpha) \sum_{\ell=2}^{\infty} (1 - \alpha)^{\ell-1}$$

$$= o(1) + \frac{1 - \alpha^2}{\alpha}.$$
Need to verify Claim 1:

\[\Pr \left(\nu_{k, \ell} \geq (1 + \alpha)(5d^2(1 - \varepsilon)^{d/2})^{\ell-1}k \right) = o(n^{-2}). \]

First we show that \(|B|\) is small w.h.p.:

\[\Pr(|B| \geq 5(1 - \varepsilon)^{d/2}k) = O(e^{-\Omega(n^{1/2})}). \]
Expose edges one by one until \overline{R}_{i-1} reached or the d edges are exhausted.

Partition B by counting the number of exposures before \overline{R}_{i-1} is reached, if it is.
Cuckoo Hashing

Expose edges one by one until \bar{R}_{i-1} reached or the d edges are exhausted.

Partition B by counting the number of exposures before \bar{R}_{i-1} is reached, if it is.
Cuckoo Hashing

Expose edges one by one until \overline{R}_{i-1} reached or the d edges are exhausted.

Partition B by counting the number of exposures before \overline{R}_{i-1} is reached, if it is.
Cuckoo Hashing

Expose edges one by one until R_{i-1} reached or the d edges are exhausted.

Partition B by counting the number of exposures before R_{i-1} is reached, if it is.
Expose edges one by one until \overline{R}_{i-1} reached or the d edges are exhausted.

Partition B by counting the number of exposures before \overline{R}_{i-1} is reached, if it is.
Cuckoo Hashing

\[B = B_1 \cup B_2 \cup B_3 \cup B_4 \text{ where} \]

\[B_1 = \{ v_i \in B : \text{round } i \text{ exposes at least } d/2 \text{ edges incident with } v_i \} . \]

Chernoff bounds show

\[\Pr (|B_1| \geq 2k(1 - \varepsilon)^{d/2}) = O(e^{-\Omega(n^{1/2})}). \]
Cuckoo Hashing

\(B = B_1 \cup B_2 \cup B_3 \cup B_4 \) where

\(B_1 = \{ v_i \in B : \text{round } i \text{ exposes at least } d/2 \text{ edges incident with } v_i \} \).

Chernoff bounds show

\[\Pr (|B_1| \geq 2k(1 - \epsilon)^{d/2}) = O(e^{-\Omega(n^{1/2})}). \]

\(B_2 = \{ v_i \in B : \text{round } i \text{ does not end in Step 2 with } x = v_i \}. \)

We have \(\mathbb{E}(|B_2|) \leq \frac{k^{d+1}}{(d+1)m^d} \) and we can use Hoeffding inequality.
$B_3 = \{ v_i \in B : \exists \ell \leq k, \ell \neq i \text{ s.t. round } \ell \text{ ends with } x = v_i \}$

We have $|B_3| \leq |B_2|$ since then $\ell \in B_2$.

Tony Johansson, Carnegie Mellon University
Insertion time of random walk cuckoo hashing
\[B_3 = \{ v_i \in B : \exists \ell \leq k, \ell \neq i \text{ s.t. round } \ell \text{ ends with } x = v_i \} \]

We have \(|B_3| \leq |B_2|\) since then \(\ell \in B_2\).

\[B_4 = B \setminus (B_1 \cup B_2 \cup B_3) \]. If \(v_i \in B_4\) then
- round \(i\) reached \(R_{i-1}\) in \(\leq d/2\) queries,
- no other round \(\ell \leq k\) ended at \(v_i\), and
- all neighbors of \(v_i\) are in \(R_{k-1}\).

The probability of this is at most \((1 - \varepsilon)^{d/2}\), so \(E(|B_4|) \leq (1 - \varepsilon)^{d/2}k\). Apply Chernoff.
Let $\gamma = 5(1 - \varepsilon)^{d/2}$ so that $|B| \leq \gamma k$ w.h.p.

$$E(\nu_{k,\ell}) = E(\nu_{k,\ell} \mid |B| \leq \gamma k) \Pr(|B| \leq \gamma k) + E(\nu_{k,\ell} \mid |B| > \gamma k) \Pr(|B| > \gamma k)$$

$$\leq k^\ell \gamma^\ell k^{\ell - 1} \cdot \left((1 + o(1)) \frac{d}{k}\right)^{2\ell - 2} + O(k^{2\ell - 1} \cdot e^{-\Omega(n^{1/4})}),$$

$$\leq (1 + o(1)) k \gamma (d^2 \gamma)^{\ell - 1} + o(1).$$

Middle inequality needs some care.
Now we use Azuma-Hoeffding to show concentration.

It follows that whp,

$$\nu_{k,\ell} < (1 + \alpha) \gamma^\ell d^{2\ell - 2} k$$
Cuckoo Hashing

Open Questions:

- Find the correct dependence of d on ε.
- Do an analysis of $d = 3$ and $1/2 < \varepsilon < 1$.
THANK YOU